Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 15;219(1):24-32.
doi: 10.1016/j.taap.2006.10.032. Epub 2006 Dec 15.

Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice

Affiliations

Diesel exhaust particles induce endothelial dysfunction in apoE-/- mice

Christian S Hansen et al. Toxicol Appl Pharmacol. .

Abstract

Background: Particulate air pollution can aggravate cardiovascular disease by mechanisms suggested to involve translocation of particles to the bloodstream and impairment of endothelial function, possibly dependent on present atherosclerosis.

Aim: We investigated the effects of exposure to diesel exhaust particles (DEP) in vivo and ex vivo on vasomotor functions in aorta from apoE(-/-) mice with slight atherosclerosis and from normal apoE(+/+) mice.

Methods: DEP 0, 0.5 or 5 mg/kg bodyweight in saline was administered i.p. The mice were sacrificed 1 h later and aorta ring segments were mounted on wire myographs. Segments from unexposed mice were also incubated ex vivo with 0, 10 and 100 microg DEP/ml before measurement of vasomotor functions.

Results: Exposure to 0.5 mg/kg DEP in vivo caused a decrease in the endothelium-dependent acetylcholine elicited vasorelaxation in apoE(-/-) mice, whereas the response was enhanced in apoE(+/+) mice. No significant change was observed after administration of 5 mg/kg DEP. In vivo DEP exposure did not affect constriction induced by K(+) or phenylephrine. In vitro exposure to 100 microg DEP/ml enhanced acetylcholine-induced relaxation and attenuated phenylephrine-induced constriction. Vasodilation induced by sodium nitroprusside was not affected by any DEP exposure.

Conclusion: Exposure to DEP has acute effect on vascular functions. Endothelial dysfunction possibly due to decreased NO production as suggested by decreased acetylcholine-induced vasorelaxation and unchanged sodium nitroprusside response can be induced by DEP in vivo only in vessels of mice with some atherosclerosis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources