Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;25(5):1241-51.
doi: 10.1634/stemcells.2006-0320. Epub 2007 Jan 18.

Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells

Affiliations

Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells

Vivian H Fan et al. Stem Cells. 2007 May.

Abstract

MSC can act as a pluripotent source of reparative cells during injury and therefore have great potential in regenerative medicine and tissue engineering. However, the response of MSC to many growth factors and cytokines is unknown. Many envisioned applications of MSC, such as treating large defects in bone, involve in vivo implantation of MSC attached to a scaffold, a process that creates an acute inflammatory environment that may be hostile to MSC survival. Here, we investigated cellular responses of MSC on a biomaterial surface covalently modified with epidermal growth factor (EGF). We found that surface-tethered EGF promotes both cell spreading and survival more strongly than saturating concentrations of soluble EGF. By sustaining mitogen-activated protein kinase kinase-extracellular-regulated kinase signaling, tethered EGF increases the contact of MSC with an otherwise moderately adhesive synthetic polymer and confers resistance to cell death induced by the proinflammatory cytokine, Fas ligand. We concluded that tethered EGF may offer a protective advantage to MSC in vivo during acute inflammatory reactions to tissue engineering scaffolds. The tethered EGF-modified polymers described here could be used together with structural materials to construct MSC scaffolds for the treatment of hard-tissue lesions, such as large bony defects. Disclosure of potential conflicts of interest is found at the end of this article.

PubMed Disclaimer

Publication types

MeSH terms