Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
- PMID: 17237060
- DOI: 10.1093/bioinformatics/btl664
Quick calculation for sample size while controlling false discovery rate with application to microarray analysis
Erratum in
- Bioinformatics. 2008 Jan 1;24(1):149
Abstract
Motivation: Sample size calculation is important in experimental design and is even more so in microarray or proteomic experiments since only a few repetitions can be afforded. In the multiple testing problems involving these experiments, it is more powerful and more reasonable to control false discovery rate (FDR) or positive FDR (pFDR) instead of type I error, e.g. family-wise error rate (FWER). When controlling FDR, the traditional approach of estimating sample size by controlling type I error is no longer applicable.
Results: Our proposed method applies to controlling FDR. The sample size calculation is straightforward and requires minimal computation, as illustrated with two sample t-tests and F-tests. Based on simulation with the resultant sample size, the power is shown to be achievable by the q-value procedure.
Availability: A Matlab code implementing the described methods is available upon request.
Similar articles
-
Practical FDR-based sample size calculations in microarray experiments.Bioinformatics. 2005 Aug 1;21(15):3264-72. doi: 10.1093/bioinformatics/bti519. Epub 2005 Jun 2. Bioinformatics. 2005. PMID: 15932903
-
Sample size for FDR-control in microarray data analysis.Bioinformatics. 2005 Jul 15;21(14):3097-104. doi: 10.1093/bioinformatics/bti456. Epub 2005 Apr 21. Bioinformatics. 2005. PMID: 15845654
-
Empirical Bayes screening of many p-values with applications to microarray studies.Bioinformatics. 2005 May 1;21(9):1987-94. doi: 10.1093/bioinformatics/bti301. Epub 2005 Feb 2. Bioinformatics. 2005. PMID: 15691856
-
Classification based upon gene expression data: bias and precision of error rates.Bioinformatics. 2007 Jun 1;23(11):1363-70. doi: 10.1093/bioinformatics/btm117. Epub 2007 Mar 28. Bioinformatics. 2007. PMID: 17392326 Review.
-
Microarray data analysis for differential expression: a tutorial.P R Health Sci J. 2009 Jun;28(2):89-104. P R Health Sci J. 2009. PMID: 19530550 Review.
Cited by
-
Statistical Analysis of Post-Translational Modifications Quantified by Label-Free Proteomics Across Multiple Biological Conditions with R: Illustration from SARS-CoV-2 Infected Cells.Methods Mol Biol. 2023;2426:267-302. doi: 10.1007/978-1-0716-1967-4_12. Methods Mol Biol. 2023. PMID: 36308693
-
Statistical considerations for analysis of microarray experiments.Clin Transl Sci. 2011 Dec;4(6):466-77. doi: 10.1111/j.1752-8062.2011.00309.x. Epub 2011 Nov 7. Clin Transl Sci. 2011. PMID: 22212230 Free PMC article. Review.
-
DNA methylation profiles of cancer-related fatigue associated with markers of inflammation and immunometabolism.Mol Psychiatry. 2025 Jan;30(1):76-83. doi: 10.1038/s41380-024-02652-z. Epub 2024 Jul 9. Mol Psychiatry. 2025. PMID: 38977918
-
RNASeqDesign: A framework for RNA-Seq genome-wide power calculation and study design issues.J R Stat Soc Ser C Appl Stat. 2019 Apr;68(3):683-704. doi: 10.1111/rssc.12330. Epub 2018 Dec 9. J R Stat Soc Ser C Appl Stat. 2019. PMID: 33692596 Free PMC article.
-
Mycobacterium tuberculosis-Induced Bronchoalveolar Lavage Gene Expression Signature in Latent Tuberculosis Infection Is Dominated by Pleiotropic Effects of CD4+ T Cell-Dependent IFN-γ Production despite the Presence of Polyfunctional T Cells within the Airways.J Immunol. 2019 Oct 15;203(8):2194-2209. doi: 10.4049/jimmunol.1900230. Epub 2019 Sep 20. J Immunol. 2019. PMID: 31541022 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources