Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan 15;23(2):e219-24.
doi: 10.1093/bioinformatics/btl310.

Using an alignment of fragment strings for comparing protein structures

Affiliations

Using an alignment of fragment strings for comparing protein structures

Iddo Friedberg et al. Bioinformatics. .

Abstract

Motivation: Most methods that are used to compare protein structures use three-dimensional (3D) structural information. At the same time, it has been shown that a 1D string representation of local protein structure retains a degree of structural information. This type of representation can be a powerful tool for protein structure comparison and classification, given the arsenal of sequence comparison tools developed by computational biology. However, in order to do so, there is a need to first understand how much information is contained in various possible 1D representations of protein structure.

Results: Here we describe the use of a particular structure fragment library, denoted here as KL-strings, for the 1D representation of protein structure. Using KL-strings, we develop an infrastructure for comparing protein structures with a 1D representation. This study focuses on the added value gained from such a description. We show the new local structure language adds resolution to the traditional three-state (helix, strand and coil) secondary structure description, and provides a high degree of accuracy in recognizing structural similarities when used with a pairwise alignment benchmark. The results of this study have immediate applications towards fast structure recognition, and for fold prediction and classification.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources