Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;87(1):219-44.
doi: 10.1152/physrev.00028.2006.

Transcriptional control of lung morphogenesis

Affiliations
Free article
Review

Transcriptional control of lung morphogenesis

Yutaka Maeda et al. Physiol Rev. 2007 Jan.
Free article

Abstract

The vertebrate lung consists of multiple cell types that are derived primarily from endodermal and mesodermal compartments of the early embryo. The process of pulmonary organogenesis requires the generation of precise signaling centers that are linked to transcriptional programs that, in turn, regulate cell numbers, differentiation, and behavior, as branching morphogenesis and alveolarization proceed. This review summarizes knowledge regarding the expression and proposed roles of transcription factors influencing lung formation and function with particular focus on knowledge derived from the study of the mouse. A group of transcription factors active in the endodermally derived cells of the developing lung tubules, including thyroid transcription factor-1 (TTF-1), beta-catenin, Forkhead orthologs (FOX), GATA, SOX, and ETS family members are required for normal lung morphogenesis and function. In contrast, a group of distinct proteins, including FOXF1, POD1, GLI, and HOX family members, play important roles in the developing lung mesenchyme, from which pulmonary vessels and bronchial smooth muscle develop. Lung formation is dependent on reciprocal signaling among cells of both endodermal and mesenchymal compartments that instruct transcriptional processes mediating lung formation and adaptation to breathing after birth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources