Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 16;367(1):174-86.
doi: 10.1016/j.jmb.2006.12.053. Epub 2006 Dec 23.

Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities

Affiliations

Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities

Sigrid D Auweter et al. J Mol Biol. .

Abstract

NMR spectroscopy has proven to be a powerful tool for the structure determination of protein/RNA complexes. However, the quality of these structures depends critically on the number of unambiguous intermolecular and intra-RNA nuclear Overhauser effect (NOE) constraints that can be derived. This number is often limited due to exchange phenomena that can cause signal line broadening and the fact that unambiguous NOE assignments are challenging in systems that exchange between different conformations in the intermediate to fast exchange limit. These exchange processes can include exchange between free and bound form, as well as exchange of the ligand between different binding sites on the protein. Furthermore, for the large class of RNA metabolizing proteins that bind repetitive low-complexity RNA sequences in multiple register, exchange of the protein between these overlapping binding sites introduces additional exchange pathways. Here, we describe the strategy we used to overcome these exchange processes and to reduce significantly the line width of the RNA resonances in complexes of the RNA recognition motifs (RRMs) of the polypyrimidine tract-binding protein (PTB) in complex with pyrimidine tracts and hence allowed a highly precise structure determination. This method could be employed to derive structures of other protein/single-stranded nucleic acid complexes by NMR spectroscopy. Furthermore, we have determined the affinities of the individual RRMs of PTB for pyrimidine tracts of different length and sequence. These measurements show that PTB binds preferentially to long pyrimidine tracts that contain cytosine and hence confirm the structure of PTB in complex with RNA. Furthermore, they provide quantitative insight into the question of which pyrimidine sequences within alternatively spliced pre-mRNAs will be preferentially bound by PTB.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources