Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991:633:64-77.
doi: 10.1111/j.1749-6632.1991.tb15596.x.

Physiological properties of oligodendrocytes during development

Affiliations

Physiological properties of oligodendrocytes during development

H Kettenmann et al. Ann N Y Acad Sci. 1991.

Abstract

The electrical properties of oligodendrocytes during their development in cell culture were analyzed by combining two techniques: cell identification with cell-type and stage-specific antibodies and the patch-clamp technique. The transition from the bipotential precursor cell, which can still develop into astrocytes and oligodendrocytes, into an oligodendrocyte results in a marked change in the ion channel pattern. During this developmental transition, voltage-activated Na+ and several types of K+ currents disappear, whereas a comparatively passive, inwardly rectifying K+ current becomes dominant. GABAA receptor-mediated Cl- currents and a pH-activated Na+ current are down-regulated at this transition but are still present at all developmental stages. In contrast, electrical coupling develops only in oligodendrocytes. This change in the channel repertoire could reflect the transition of a cell in a mobile, mitotic, plastic state (the glial precursor) to a more differentiated specialized state (the oligodendrocyte).

PubMed Disclaimer

Publication types

LinkOut - more resources