Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;26(1):17-27.
doi: 10.1016/j.immuni.2007.01.002.

Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells

Affiliations
Free article
Review

Force as a facilitator of integrin conformational changes during leukocyte arrest on blood vessels and antigen-presenting cells

Ronen Alon et al. Immunity. 2007 Jan.
Free article

Abstract

Integrins comprise a large family of cell-cell and cell-matrix adhesion receptors that rapidly modulate their adhesiveness. The arrest of leukocyte integrins on target vascular beds involves instantaneous conformational switches generating shear-resistant adhesions. Structural data suggest that these integrins are maintained in low-affinity conformations and must rapidly undergo conformational switches transduced via cytoplasmic changes ("inside-out" signaling) and simultaneous ligand-induced rearrangements ("outside-in"). This bidirectional activation is accelerated by signals from endothelial chemoattractants (chemokines). Recent studies predict that shear forces in the piconewton (pN) range per integrin can facilitate these biochemical switches. After extravasation, antigen recognition involves smaller internal forces from cytoskeletal motors and actin polymers forming the immune synapse. In this review, we address how forces facilitate allosteric integrin activation by biochemical signals. Evidence suggests that preformed cytoskeletal anchorage rather than free integrin mobility is key for force-enhanced integrin activation by chemokines and TCR signals.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources