Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jan;26(1):93-105.
doi: 10.1109/TMI.2006.886812.

COMPARE: classification of morphological patterns using adaptive regional elements

Affiliations

COMPARE: classification of morphological patterns using adaptive regional elements

Yong Fan et al. IEEE Trans Med Imaging. 2007 Jan.

Abstract

This paper presents a method for classification of structural brain magnetic resonance (MR) images, by using a combination of deformation-based morphometry and machine learning methods. A morphological representation of the anatomy of interest is first obtained using a high-dimensional mass-preserving template warping method, which results in tissue density maps that constitute local tissue volumetric measurements. Regions that display strong correlations between tissue volume and classification (clinical) variables are extracted using a watershed segmentation algorithm, taking into account the regional smoothness of the correlation map which is estimated by a cross-validation strategy to achieve robustness to outliers. A volume increment algorithm is then applied to these regions to extract regional volumetric features, from which a feature selection technique using support vector machine (SVM)-based criteria is used to select the most discriminative features, according to their effect on the upper bound of the leave-one-out generalization error. Finally, SVM-based classification is applied using the best set of features, and it is tested using a leave-one-out cross-validation strategy. The results on MR brain images of healthy controls and schizophrenia patients demonstrate not only high classification accuracy (91.8% for female subjects and 90.8% for male subjects), but also good stability with respect to the number of features selected and the size of SVM kernel used.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms