The Immunobiology of SARS*
- PMID: 17243893
- DOI: 10.1146/annurev.immunol.25.022106.141706
The Immunobiology of SARS*
Abstract
Severe acute respiratory syndrome (SARS) presented as an atypical pneumonia that progressed to acute respiratory distress syndrome in approximately 20% of cases and was associated with a mortality of about 10%. The etiological agent was a novel coronavirus (CoV). Angiotensin-converting enzyme 2 is the functional receptor for SARS-CoV; DC-SIGN and CD209L (L-SIGN) can enhance viral entry. Although the virus infects the lungs, gastrointestinal tract, liver, and kidneys, the disease is limited to the lungs, where diffuse alveolar damage is accompanied by a disproportionately sparse inflammatory infiltrate. Pro-inflammatory cytokines and chemokines, particularly IP-10, IL-8, and MCP-1, are elevated in the lungs and peripheral blood, but there is an unusual lack of an antiviral interferon (IFN) response. The virus is susceptible to exogenous type I IFN but suppresses the induction of IFN. Innate immunity is important for viral clearance in the mouse model. Virus-specific neutralizing antibodies that develop during convalescence prevent reinfection in animal models.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous