Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 Sep;30(1):192-200.
doi: 10.1002/jnr.490300120.

Maturation and aging of the axonal cytoskeleton: biochemical analysis of transported tubulin

Affiliations

Maturation and aging of the axonal cytoskeleton: biochemical analysis of transported tubulin

T Tashiro et al. J Neurosci Res. 1991 Sep.

Abstract

Changes in solubility and axonal transport of tubulin during maturation and aging have been investigated using sciatic motor fibers of rats at 4, 7, 14, 30, and 80 weeks of age. One to six weeks after injection of L-[35S]methionine into the spinal cord, labeled cytoskeletal proteins in consecutive segments of the sciatic nerve and the ventral roots were fractionated into soluble and insoluble forms by extraction in 1% Triton at low temperature. In 4-week-old rats, the two forms of tubulin were transported coordinately in a single wave with the average rate of 2 mm/day. At 7 weeks of age, two components in tubulin transport were observed to develop, possibly reflecting the maturation of the axonal cytoskeleton. The slower main component (1.5 mm/day) contained most of the insoluble form together with the neurofilament proteins and the faster component (3 mm/day) was enriched in the soluble form. Though significantly different in composition, the two components correspond to slow component a (SCa) and slow component b (SCb) originally defined in the optic system. A progressive decrease in transport rates of both SCa and SCb was observed with rats at 14, 30, and 80 weeks of age. In addition, there was a large decrease in the proportion of insoluble tubulin during the course of transport in animals older than 30 weeks. This loss of the insoluble form seems to be accounted for partly by the proteolytic degradation of the severely retarded SCa proteins. Changes in axonal transport of tubulin may thus reflect age-related changes in dynamics and turnover of the axonal cytoskeleton.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources