Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;45(1):121-8.

Erythrocyte deformability and its variation in diabetes mellitus

Affiliations
  • PMID: 17249336
Review

Erythrocyte deformability and its variation in diabetes mellitus

Sehyun Shin et al. Indian J Exp Biol. 2007 Jan.

Abstract

Erythrocyte deformability improves blood flow in the microvessels and in large arteries at high shear rate. The major determinants of RBC deformability include cell geometry, cell shape and internal viscosity (i.e., mean cell hemoglobin concentration and components of the erythrocyte membrane). The deformability is measured by several techniques but filtration of erythrocytes through micro-pore membranes and ektacytometry are two sensitive techniques to detect changes in erythrocytes under varied experimental and diseased conditions. Diabetes mellitus (DM) is a metabolic disorder, characterized by varying or persistent hyperglycemia, which induces several changes in the erythrocyte membrane and its cytoplasm, leading to alteration in the deformability. A decreasing trend of deformability in these patients is observed. The shape descriptor form factor, as determined by processing of erythrocyte images, increases with the increase of blood glucose levels and shows a pattern similar to filtration time of erythrocyte suspensions through cellulose membranes. Fluidity of the membrane as measured in erythrocytes of these patients is decreased. With prolonged diabetic conditions the deformability of erythrocytes is further decreased, which may complicate the flow of these cells in microvessels.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources