Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov;102(1):75-104.
doi: 10.1016/0025-5564(90)90056-5.

Graphs, random sums, and sojourn time distributions, with application to ion-channel modeling

Affiliations

Graphs, random sums, and sojourn time distributions, with application to ion-channel modeling

R O Edeson et al. Math Biosci. 1990 Nov.

Abstract

This paper considers the distribution of a sojourn time in a class of states of a stochastic process having finite discrete state space where sojourn times in any individual state are independent and identically distributed, and transitions between states follow a Markov chain. The state space and possible transitions of the process are represented by a graph. Class sojourn time distributions are derived by modifying this graph using 'composition' of states, defining a new Markov chain on the modified graph, and expressing the sojourn time in a composition state as a random sum. Appropriate compositions are chosen according to the possible "cores" of sojourns in the particular class, where a core describes the structure of a sojourn in terms of a single state or a chain in the original graph. Graph methods provide an algorithmic basis for the derivation, which can be simplified by using symmetry results. Models of ion-channel kinetics are used throughout for illustration; class sojourn time distributions are important in such models because individual states are often indistinguishable experimentally. Markov processes are the special case where sojourn times in individual states are exponentially distributed. In this case kinetic parameter estimation based on the observed class sojourn time distribution is briefly discussed; explicit estimating equations applicable to sequential models of nicotinic receptor kinetics are given.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources