Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;321(1):45-50.
doi: 10.1124/jpet.106.115550. Epub 2007 Jan 24.

Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide)

Affiliations

Astrocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide)

Sang Won Suh et al. J Pharmacol Exp Ther. 2007 Apr.

Abstract

Glycogen in the brain is localized almost exclusively to astrocytes. The physiological function of this energy store has been difficult to establish because of the difficulty in manipulating brain glycogen concentrations in vivo. Here, we used a novel glycogen phosphorylase inhibitor, CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl)propyl]-1H-indole-2-carboxamide), that causes glycogen accumulation under normoglycemic conditions but permits glycogen utilization when glucose concentrations are low. Rats treated with CP-316,819 had an 88 +/- 3% increase in brain glycogen content. When subjected to hypoglycemia, these rats maintained brain electrical activity 91 +/- 14 min longer than rats with normal brain glycogen levels and showed markedly reduced neuronal death. These studies establish a novel approach for manipulating brain glycogen concentration in normal, awake animals and provide in vivo confirmation that astrocyte glycogen supports neuronal function and survival during glucose deprivation. These findings also suggest an approach for forestalling hypoglycemic coma and brain injury in diabetic patients.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources