Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;61(3):263-71.
doi: 10.1002/ana.21066.

N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury

Affiliations

N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury

Xiaoyang Wang et al. Ann Neurol. 2007 Mar.

Abstract

Objective: Maternal inflammation/infection alone or in combination with birth asphyxia increases the risk for perinatal brain injury. Free radicals are implicated as major mediators of inflammation and hypoxia-ischemia (HI)-induced perinatal brain injury. This study evaluated the neuroprotective efficacy of a scavenging agent, N-acetylcysteine (NAC), in a clinically relevant model.

Methods: Lipopolysaccharide (LPS)-sensitized HI brain injury was induced in 8-day-old neonatal rats. NAC was administered in multiple doses, and brain injury was evaluated at 7 days after HI.

Results: NAC (200mg/kg) provided marked neuroprotection with up to 78% reduction of brain injury in the pre+post-HI treatment group and 41% in the early (0 hour) post-HI treatment group, which was much more pronounced protection than another free radical scavenger, melatonin. Protection by NAC was associated with the following factors: (1) reduced isoprostane activation and nitrotyrosine formation; (2) increased levels of the antioxidants glutathione, thioredoxin-2, and (3) inhibition of caspase-3, calpain, and caspase-1 activation.

Interpretation: NAC provides substantial neuroprotection against brain injury in a model that combines infection/inflammation and HI. Protection by NAC was associated with improvement of the redox state and inhibition of apoptosis, suggesting that these events play critical roles in the development of lipopolysaccharide-sensitized HI brain injury.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources