QTAIM study of strong H-bonds with the O-H...a fragment (A=O, N) in three-dimensional periodical crystals
- PMID: 17253671
- DOI: 10.1021/jp067057d
QTAIM study of strong H-bonds with the O-H...a fragment (A=O, N) in three-dimensional periodical crystals
Abstract
The relationship between the d(H...A) distance (A=O, N) and the topological properties at the H...A bond critical point of 37 strong (short) hydrogen bonds occurring in 26 molecular crystals are analyzed using the quantum theory of atoms in molecules (QTAIM). Ground-state wave functions of the three-dimensional periodical structures representing the accurate experimental geometries calculated at the B3LYP/6-31G** level of approximation were used to obtain the QTAIM electron density characteristics. The use of an electron-correlated method allowed us to reach the quantitatively correct values of electron density rhob at the H...A bond critical point. However, quite significant differences can appear for small absolute values of the Laplacian (<0.5 au). The difference between the H...O and H...N interactions is described using the rhob versus d(H...A) dependence. It is demonstrated that the values of parameters in this dependence are defined by the nature of the heavy atom forming the H...A bond. An intermediate (or transit) region separating the shared and closed-shell interactions is observed for the H-bonded crystals in which the bridging proton can move from one heavy atom to another. The crystalline environment changes the location of the bridging proton in strong H-bonded systems; however, the d(O-H)/d(H...O) ratio is approximately the same for both the gas-phase complexes and molecular crystals with a linear or near-linear O-H...O bond.
LinkOut - more resources
Full Text Sources