Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991:17 Suppl 7:S89-95.
doi: 10.1097/00005344-199100177-00024.

Regulation of intracellular Ca2+ and gene expression by endothelin-1

Affiliations

Regulation of intracellular Ca2+ and gene expression by endothelin-1

K D Rodland et al. J Cardiovasc Pharmacol. 1991.

Abstract

In addition to its powerful vasoconstrictive activity, endothelin-1 (ET-1) is a potent agonist for stimulating a multitude of second messenger pathways. In the Rat-1 fibroblastic cell line, ET-1 induces a robust elevation of the intracellular levels of Ca2+, diacylglycerols (DGs), and inositol trisphosphate (IP3). Although low concentrations of ET-1 stimulate a significant increase in the rate of Ca2+ influx, this Ca2+ influx is not required for the observed increases in either IP3 or DG levels following ET-1 treatment, as both of these effects are observed even in the absence of extracellular Ca2+. The ability of ET-1 to stimulate Ca2+ influx shows a biphasic pattern, such that Ca2+ influx is stimulated at low ET-1 concentrations and inhibited at high concentrations. Investigations of the molecular mechanisms underlying this biphasic response indicate that elevated intracellular Ca2+ levels exert a negative feedback inhibition on Ca2+ influx, which can be relieved by the chelation of intracellular Ca2+. The ability of ET-1 to activate a number of distinct signal transduction pathways appears to have direct functional significance in determining the targeting of ET-1 activation. Short-term effects of ET-1 stimulation such as the induction of gene expression appear to be independent of ET-1's ability to activate protein kinase C (PKC) by elevating DG levels, as depletion of PKC activity has little or no effect on gene expression. In contrast, the ability of ET-1 to induce the rapid expression of the VL30 gene is totally dependent upon the ability of ET-1 to elevate intracellular Ca2+ levels above a specific threshold. Activation of PKC by ET-1, however, is essential for the long-term effects of ET-1 on cell proliferation and anchorage-independent growth, as the ability of ET-1 to promote DNA synthesis and to synergize with epidermal growth factor in augmenting anchorage-independent growth is significantly inhibited by prior PKC depletion. Thus, in fibroblasts, ET-1 appears to activate at least two bifurcating pathways: a Ca(2+)-sensitive pathway involved in the regulation of gene expression, and a PKC-dependent pathway required for the mitogenic effects of ET-1.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources