Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;27(4):748-54.
doi: 10.1161/01.ATV.0000258787.18982.73. Epub 2007 Jan 25.

Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress

Affiliations

Differential effects of organic nitrates on endothelial progenitor cells are determined by oxidative stress

Thomas Thum et al. Arterioscler Thromb Vasc Biol. 2007 Apr.

Abstract

Objective: Reduced levels and impaired function of endothelial progenitor cells (EPCs) foster development and progression of atherosclerotic lesions. Endothelial nitric oxide synthase (eNOS)-derived NO regulates EPC mobilization and function. Organic nitrates release NO, and therefore may favorably affect EPC biology.

Methods and results: We compared the effects of 2 different nitrates on circulating EPC numbers and function. Treatment of rats with pentaerythritol-trinitrate (PETriN) or isosorbide dinitrate (ISDN) increased circulating EPC levels. EPC from ISDN- but not PETriN-treated animals displayed impaired migratory capacity and increased reactive oxygen species formation in EPCs. In vitro treatment with ISDN reduced migration and incorporation of human EPCs into vascular structures on matrigel, whereas PETriN improved EPC function. ISDN, but not PETriN, increased NADPH oxidase-mediated oxidative stress in cultured human EPCs. Addition of polyethylene-glycolated superoxide dismutase or diphenyliodonium normalized both ISDN-induced superoxide anion production and impaired migratory capacity of EPCs.

Conclusions: Long-acting nitrates increase levels of circulating EPCs, but differ in their effects on EPC function dependent on the induction of intracellular oxidative stress. Organic nitrates that improve EPC function may confer long-term cardiovascular protection based on their beneficial effects on EPC biology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms