Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 15;40(24):7820-7.
doi: 10.1021/es060781p.

Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions

Affiliations

Source apportionment of molecular markers and organic aerosol. 3. Food cooking emissions

Allen L Robinson et al. Environ Sci Technol. .

Abstract

The chemical mass balance model is applied to a large dataset of organic molecular marker concentrations to apportion ambient organic aerosol to food cooking emissions in Pittsburgh, Pennsylvania. Ambient concentrations of key cooking markers such as palmitoleic acid, oleic acid, and cholesterol are well correlated, which implies the existence of well-defined source profiles. However, significant inconsistencies exist between the ambient data and published source profiles. Most notably, the ambient ratio of palmitoleic-acid-to-oleic-acid is more than a factor of 10 greater than essentially all published source profiles. This problem is not unique to Pittsburgh. The reason for this discrepancy is not known but it means that both acids cannot be fit simultaneously by CMB. CMB analysis is performed using three different combinations of food cooking source profiles and molecular markers. Although all three solutions have high statistical quality, the amount of OC apportioned to food cooking emissions varies by a factor of 9. Differences in fitting species and source profile marker-to-organic-carbon ratios cause most of the large systematic biases between the different solutions. The best CMB model includes two alkanoic acids as fitting species in addition to other cooking markers, which helps constrain the source contribution estimates. It also includes two meat cooking source profiles to account for the variability in the ambient data. This model apportions 320+/-140 ng-C m(-3) or 10% of the study average ambient organic carbon to food cooking emissions. Although these results illustrate the significant challenges created by source profile variability, the strong correlations in the ambient dataset underscore the significant promise that molecular markers hold for source apportionment analysis.

PubMed Disclaimer

Publication types

LinkOut - more resources