Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;45(2):349-60.
doi: 10.1002/hep.21481.

The role of chrysin and the ah receptor in induction of the human UGT1A1 gene in vitro and in transgenic UGT1 mice

Affiliations

The role of chrysin and the ah receptor in induction of the human UGT1A1 gene in vitro and in transgenic UGT1 mice

Jessica A Bonzo et al. Hepatology. 2007 Feb.

Abstract

The flavonoid chrysin is an important dietary substance and induces UGT1A1 protein expression in cell culture. As a representative of the class of dietary flavonoids, clinical investigations have been considered as a means of inducing hepatic UGT1A1 expression. We demonstrate the necessity of a xenobiotic response element (XRE) in support of chrysin induction of UGT1A1 in the human hepatoma cell line HepG2. Receptor binding assays confirm that chrysin is a ligand for the Ah receptor by competition with [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, key differences in Ah receptor recognition and activation of UGT1A1 by chrysin exist when compared with classical mechanisms of UGT1A1 induction by TCDD. Ah receptor degradation, an indicator of Ah receptor activation, does not occur after chrysin treatment, and chrysin cannot transactivate the Ah receptor in a TCDD-dependent fashion. Knock-down of the Ah receptor by siRNA indicates that chrysin uses the Ah receptor in conjunction with other factors through MAP kinase signaling pathways to maximally induce UGT1A1. Most importantly, oral treatment of chrysin to transgenic mice that express the human UGT1 locus is unable to induce UGT1A1 expression in either the small intestine or liver.

Conclusion: Although the implications for chrysin as an atypical agonist of the Ah receptor are intriguing at the molecular level, the relevance of chrysin-induced transcription for the purpose of clinical therapies or to regulate phase 2-dependent glucuronidation is questionable given the lack of in vivo regulation of human UGT1A1 by chrysin in a transgenic animal model.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources