Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;41(5):969-76.
doi: 10.1016/j.watres.2006.11.049. Epub 2007 Jan 26.

Degradation of phthalate esters in an activated sludge wastewater treatment plant

Affiliations

Degradation of phthalate esters in an activated sludge wastewater treatment plant

Peter Roslev et al. Water Res. 2007 Mar.

Abstract

Efficient removal of phthalate esters (PE) in wastewater treatment plants (WWTP) is becoming an increasing priority in many countries. In this study, we examined the fate of dimethyl phthalate (DMP), dibutyl phthalate (DBP), butylbenzyl phthalate (BBP), and di-(2-ethylhexyl) phthalate (DEHP) in a full scale activated sludge WWTP with biological removal of nitrogen and phosphorus. The mean concentrations of DMP, DBP, BBP, and DEHP at the WWTP inlet were 1.9, 20.5, 37.9, and 71.9 microg/L, respectively. Less than 0.1%, 42%, 35%, and 96% of DMP, DBP, BBP, and DEHP was associated with suspended solids, respectively. The overall microbial degradation of DMP, DBP, BBP, and DEHP in the WWTP was estimated to be 93%, 91%, 90%, and 81%, respectively. Seven to nine percent of the incoming PE were recovered in the WWTP effluent. Factors affecting microbial degradation of DEHP in activated sludge were studied using [U-(14)C-ring] DEHP as tracer. First order rate coefficients for aerobic DEHP degradation were 1.0 x 10(-2), 1.4 x 10(-2), and 1.3 x 10(-3) at 20, 32, and 43 degrees C, respectively. Aerobic degradation rates decreased dramatically under aerobic thermophilic conditions (<0.1 x 10(-2)h(-1) at 60 degrees C). The degradation rate under anoxic denitrifying conditions was 0.3 x 10(-2)h(-1), whereas the rate under alternating conditions (aerobic-anoxic) was 0.8 x 10(-2)h(-1). Aerobic DEHP degradation in activated sludge samples was stimulated 5-9 times by addition of a phthalate degrading bacterium. The phthalate degrading bacterium was isolated from activated sludge, and maintained a capacity for DEHP degradation while growing on vegetable oil. Collectively, the results of the study identified several controls of microbial PE degradation in activated sludge. These controls may be considered to enhance PE degradation in activated sludge WWTP with biological removal of nitrogen and phosphorus.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources