Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;28(12):2109-21.
doi: 10.1016/j.biomaterials.2006.12.032. Epub 2007 Jan 16.

Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation

Affiliations

Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation

A S Rowlands et al. Biomaterials. 2007 Apr.

Abstract

In this study, we present a novel composite scaffold fabricated using a thermally induced phase separation (TIPS) process from poly(lactic-co-glycolic) (PLGA) and biomedical polyurethane (PU). This processing method has been tuned to allow intimate (molecular) mixing of these two very different polymers, giving rise to a unique morphology that can be manipulated by controlling the phase separation behaviour of an initially homogenous polymer solution. Pure PLGA scaffolds possessed a smooth, directional fibrous sheet-like structure with pore sizes of 0.1-200mum, a porous Young's modulus of 93.5kPa and were relatively brittle to touch. Pure PU scaffolds had an isotropic emulsion-like structure, a porous Young's modulus of 15.7kPa and were much more elastic than the PLGA scaffolds. The composite PLGA/PU scaffold exhibits advantageous morphological, mechanical and cell adhesion and growth supporting properties, when compared with scaffolds fabricated from PLGA or PU alone. This novel method provides a mechanism for the formation of tailored bioactive scaffolds from nominally incompatible polymers, representing a significant step forward in scaffold processing for tissue-engineering applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources