Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance
- PMID: 17259314
- PMCID: PMC1855824
- DOI: 10.1128/JB.01692-06
Disruption of a sugar transporter gene cluster in a hyperthermophilic archaeon using a host-marker system based on antibiotic resistance
Abstract
We have developed a gene disruption system in the hyperthermophilic archaeon Thermococcus kodakaraensis using the antibiotic simvastatin and a fusion gene designed to overexpress the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase gene (hmg(Tk)) with the glutamate dehydrogenase promoter. With this system, we disrupted the T. kodakaraensis amylopullulanase gene (apu(Tk)) or a gene cluster which includes apu(Tk) and genes encoding components of a putative sugar transporter. Disruption plasmids were introduced into wild-type T. kodakaraensis KOD1 cells, and transformants exhibiting resistance to 4 microM simvastatin were isolated. The transformants exhibited growth in the presence of 20 microM simvastatin, and we observed a 30-fold increase in intracellular HMG-CoA reductase activity. The expected gene disruption via double-crossover recombination occurred at the target locus, but we also observed recombination events at the hmg(Tk) locus when the endogenous hmg(Tk) gene was used. This could be avoided by using the corresponding gene from Pyrococcus furiosus (hmg(Pf)) or by linearizing the plasmid prior to transformation. While both gene disruption strains displayed normal growth on amino acids or pyruvate, cells without the sugar transporter genes could not grow on maltooligosaccharides or polysaccharides, indicating that the gene cluster encodes the only sugar transporter involved in the uptake of these compounds. The Deltaapu(Tk) strain could not grow on pullulan and displayed only low levels of growth on amylose, suggesting that Apu(Tk) is a major polysaccharide-degrading enzyme in T. kodakaraensis.
Figures






Similar articles
-
Methionine sulfoxide reductase from the hyperthermophilic archaeon Thermococcus kodakaraensis, an enzyme designed to function at suboptimal growth temperatures.J Bacteriol. 2007 Oct;189(19):7134-44. doi: 10.1128/JB.00751-06. Epub 2007 Jul 27. J Bacteriol. 2007. PMID: 17660280 Free PMC article.
-
Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.J Bacteriol. 2003 Mar;185(5):1705-11. doi: 10.1128/JB.185.5.1705-1711.2003. J Bacteriol. 2003. PMID: 12591889 Free PMC article.
-
Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1.Archaea. 2005 May;1(5):293-301. doi: 10.1155/2005/250757. Archaea. 2005. PMID: 15876562 Free PMC article.
-
An overview of 25 years of research on Thermococcus kodakarensis, a genetically versatile model organism for archaeal research.Folia Microbiol (Praha). 2020 Feb;65(1):67-78. doi: 10.1007/s12223-019-00730-2. Epub 2019 Jul 8. Folia Microbiol (Praha). 2020. PMID: 31286382 Review.
-
Catalyzing "hot" reactions: enzymes from hyperthermophilic Archaea.Chem Rec. 2002;2(3):149-63. doi: 10.1002/tcr.10023. Chem Rec. 2002. PMID: 12112867 Review.
Cited by
-
The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis.mBio. 2019 Sep 10;10(5):e01213-19. doi: 10.1128/mBio.01213-19. mBio. 2019. PMID: 31506306 Free PMC article.
-
Shuttle vector-based transformation system for Pyrococcus furiosus.Appl Environ Microbiol. 2010 May;76(10):3308-13. doi: 10.1128/AEM.01951-09. Epub 2010 Apr 2. Appl Environ Microbiol. 2010. PMID: 20363792 Free PMC article.
-
Development of a simvastatin selection marker for a hyperthermophilic acidophile, Sulfolobus islandicus.Appl Environ Microbiol. 2012 Jan;78(2):568-74. doi: 10.1128/AEM.06095-11. Epub 2011 Nov 11. Appl Environ Microbiol. 2012. PMID: 22081574 Free PMC article.
-
Adaptive evolution of a hyperthermophilic archaeon pinpoints a formate transporter as a critical factor for the growth enhancement on formate.Sci Rep. 2017 Jul 21;7(1):6124. doi: 10.1038/s41598-017-05424-8. Sci Rep. 2017. PMID: 28733620 Free PMC article.
-
CO-dependent H2 production by genetically engineered Thermococcus onnurineus NA1.Appl Environ Microbiol. 2013 Mar;79(6):2048-53. doi: 10.1128/AEM.03298-12. Epub 2013 Jan 18. Appl Environ Microbiol. 2013. PMID: 23335765 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources