Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;56(2):414-23.
doi: 10.2337/db06-0900.

The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic

Affiliations

The Rab GTPase-activating protein AS160 integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating GLUT4 traffic

Farah S L Thong et al. Diabetes. 2007 Feb.

Abstract

Insulin-dependent phosphorylation of Akt target AS160 is required for GLUT4 translocation. Insulin and platelet-derived growth factor (PDGF) (Akt activators) or activation of conventional/novel (c/n) protein kinase C (PKC) and 5' AMP-activated protein kinase (AMPK) all promote a rise in membrane GLUT4 in skeletal muscle and cultured cells. However, the downstream effectors linking these pathways to GLUT4 traffic are unknown. Here we explore the hypothesis that AS160 is a molecular link among diverse signaling cascades converging on GLUT4 translocation. PDGF and insulin increased AS160 phosphorylation in CHO-IR cells. Stimuli that activate c/n PKC or AMPK also elevated AS160 phosphorylation. We therefore examined if these signaling pathways engage AS160 to regulate GLUT4 traffic in muscle cells. Nonphosphorylatable AS160 (4P-AS160) virtually abolished the net surface GLUT4myc gains elicited by insulin, PDGF, K(+) depolarization, or 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside but partly, yet significantly, inhibited the effects of 4-phorbol-12-myristate-13-acetate. However, the hypertonicity or 2,4-dinitrophenol-dependent gains in surface GLUT4myc were unaffected by 4P-AS160. RK-AS160 (GTPase-activating protein [GAP] inactive) or 4PRK-AS160 (GAP inactive, nonphosphorylatable) had no effect on surface GLUT4myc elicited by all stimuli. Collectively, these results indicate that activation of Akt, c/n PKC, or alpha2-AMPK intersect at AS160 to regulate GLUT4 traffic, as well as highlight the potential of AS160 as a therapy target to increase muscle glucose uptake.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources