Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Dec:13 Suppl 1:S125-35.
doi: 10.1677/erc.1.01324.

Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors

Affiliations
Review

Targeting of multiple signalling pathways by heat shock protein 90 molecular chaperone inhibitors

Marissa V Powers et al. Endocr Relat Cancer. 2006 Dec.

Abstract

The last decade has seen the molecular chaperone heat shock protein 90 (HSP90) emerge as an exciting target for cancer therapy. This is because HSP90 is involved in maintaining the conformation, stability, activity and cellular localisation of several key oncogenic client proteins. These include, amongst others, ERBB2, C-RAF, CDK4, AKT/PKB, steroid hormone receptors, mutant p53, HIF-1alpha , survivin and telomerase hTERT. Therefore, modulation of this single drug target offers the prospect of simultaneously inhibiting all the multiple signalling pathways and biological processes that have been implicated in the development of the malignant phenotype. The chaperone function of HSP90 requires the formation of a multichaperone complex, which is dependent on the hydrolysis of ATP and ADP/ATP exchange. Most current inhibitors of HSP90 act as nucleotide mimetics, which block the intrinsic ATPase activity of this molecular chaperone. The first-in-class inhibitor to enter and complete phase I clinical trials was the geldanamycin analogue, 17-allylamino-17-demethoxygeldanamycin. The results of these trials have demonstrated that HSP90 is a valid drug target. Evidence of clinical activity has been seen in patients with melanoma, breast and prostate cancer. This article provides a personal perspective of the present efforts to increase our understanding of the molecular and cellular consequences of HSP90 inhibition, with examples from work in our own laboratory. We also review the discovery and development of novel small-molecule inhibitors and discuss alternative approaches to inhibit HSP90 activity, both of which offer exciting prospects for the future.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources