Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 7;129(5):1105-12.
doi: 10.1021/ja0641406.

Ring-expanding olefin metathesis: a route to highly active unsymmetrical macrocyclic oligomeric co-salen catalysts for the hydrolytic kinetic resolution of epoxides

Affiliations

Ring-expanding olefin metathesis: a route to highly active unsymmetrical macrocyclic oligomeric co-salen catalysts for the hydrolytic kinetic resolution of epoxides

Xiaolai Zheng et al. J Am Chem Soc. .

Abstract

In the presence of the third generation Grubbs catalyst, the ring-expanding olefin metathesis of a monocyclooct-4-en-1-yl functionalized salen ligand and the corresponding Co(II)(salen) complex at low monomer concentrations results in the exclusive formation of macrocyclic oligomeric structures with the salen moieties being attached in an unsymmetrical, flexible, pendent manner. The TOF-MALDI mass spectrometry reveals that the resulting macrocyclic oligomers consist predominantly of dimeric to tetrameric species, with detectable traces of higher homologues up to a decamer. Upon activation under aerobic and acidic conditions, these Co(salen) macrocycles exhibit extremely high reactivities and selectivities in the hydrolytic kinetic resolution (HKR) of a variety of racemic terminal epoxides under neat conditions with very low catalyst loadings. The excellent catalytic properties can be explained in terms of the new catalyst's appealing structural features, namely, the flexible oligomer backbone, the unsymmetrical pendent immobilization motif of the catalytic sites, and the high local concentration of Co(salen) species resulting from the macrocyclic framework. This ring-expanding olefin metathesis is suggested to be a simple way to prepare tethered metal complexes that are endowed with key features--(i) a high local concentration of metal complexes and (ii) a flexible, single point of attachment to the support--that facilitate rapid and efficient catalysis when a bimetallic transition state is required.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources