Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes
- PMID: 17263531
- DOI: 10.1021/ja066509x
Scope and mechanism of the intermolecular addition of aromatic aldehydes to olefins catalyzed by Rh(I) olefin complexes
Abstract
Rhodium (I) bis-olefin complexes Cp*Rh(VTMS)(2) and CpRh(VTMS)(2) (Cp* = C(5)Me(5), Cp = C(5)Me(4)CF(3), VTMS = vinyl trimethylsilane) were found to catalyze the addition of aromatic aldehydes to olefins to form ketones. Use of the more electron-deficient catalyst CpRh(VTMS)(2) results in faster reaction rates, better selectivity for linear ketone products from alpha-olefins, and broader reaction scope. NMR studies of the hydroacylation of vinyltrimethylsilane showed that the starting Rh(I) bis-olefin complexes and the corresponding Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) complexes were catalyst resting states, with an equilibrium established between them prior to turnover. Mechanistic studies suggested that CpRh(VTMS)(2) displayed a faster turnover frequency (relative to Cp*Rh(VTMS)(2)) because of an increase in the rate of reductive elimination, the turnover-limiting step, from the more electron-deficient metal center of CpRh(VTMS)(2). Reaction of Cp*/Rh(CH(2)CH(2)SiMe(3))(CO)(Ar) with PMe(3) yields acyl complexes Cp*/Rh[C(O)CH(2)CH(2)SiMe(3)](PMe(3))(Ar); measured first-order rates of reductive elimination of ketone from these Rh(III) complexes established that the Cp ligand accelerates this process relative to the Cp* ligand.
Similar articles
-
Rh-catalyzed intramolecular olefin hydroacylation: enantioselective synthesis of seven- and eight-membered heterocycles.J Am Chem Soc. 2009 May 27;131(20):6932-3. doi: 10.1021/ja901915u. J Am Chem Soc. 2009. PMID: 19415904
-
Intermolecular alkene and alkyne hydroacylation with beta-S-substituted aldehydes: mechanistic insight into the role of a hemilabile P-O-P ligand.Chemistry. 2008;14(27):8383-97. doi: 10.1002/chem.200800738. Chemistry. 2008. PMID: 18666296
-
The synthesis, characterisation and reactivity of 2-phosphanylethylcyclopentadienyl complexes of cobalt, rhodium and iridium.Dalton Trans. 2006 Jan 7;(1):91-107. doi: 10.1039/b512054c. Epub 2005 Nov 21. Dalton Trans. 2006. PMID: 16357965
-
From α-arylation of olefins to acylation with aldehydes: a journey in regiocontrol of the Heck reaction.Acc Chem Res. 2011 Aug 16;44(8):614-26. doi: 10.1021/ar200053d. Epub 2011 May 25. Acc Chem Res. 2011. PMID: 21612205 Review.
-
Teaching Aldehydes New Tricks Using Rhodium- and Cobalt-Hydride Catalysis.Acc Chem Res. 2021 Mar 2;54(5):1236-1250. doi: 10.1021/acs.accounts.0c00771. Epub 2021 Feb 3. Acc Chem Res. 2021. PMID: 33533586 Free PMC article. Review.
Cited by
-
Ruthenium hydride-catalyzed regioselective addition of benzaldehyde to dienes leading to β,γ-unsaturated ketones: a DFT study.J Mol Model. 2012 Dec;18(12):4955-63. doi: 10.1007/s00894-012-1493-1. Epub 2012 Jun 22. J Mol Model. 2012. PMID: 22722699
-
Traceless Rhodium-Catalyzed Hydroacylation Using Alkyl Aldehydes: The Enantioselective Synthesis of β-Aryl Ketones.Chemistry. 2016 Oct 24;22(44):15624-15628. doi: 10.1002/chem.201604035. Epub 2016 Sep 26. Chemistry. 2016. PMID: 27666437 Free PMC article.
-
α-Amidoaldehydes as Substrates in Rhodium-Catalyzed Intermolecular Alkyne Hydroacylation: The Synthesis of α-Amidoketones.Chemistry. 2020 Sep 10;26(51):11710-11714. doi: 10.1002/chem.202002478. Epub 2020 Jul 30. Chemistry. 2020. PMID: 32449532 Free PMC article.
-
Enantioselective hydroacylation of olefins with rhodium catalysts.Chem Commun (Camb). 2014 Nov 18;50(89):13645-9. doi: 10.1039/c4cc02276a. Chem Commun (Camb). 2014. PMID: 25277153 Free PMC article.
-
Diverse and Selective Metal-Ligand Cooperative Routes for Activating Non-Functionalized Ketones.Inorg Chem. 2025 Feb 10;64(5):2188-2206. doi: 10.1021/acs.inorgchem.4c03214. Epub 2025 Jan 30. Inorg Chem. 2025. PMID: 39885694 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous