Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb 15;120(Pt 4):638-47.
doi: 10.1242/jcs.03357. Epub 2007 Jan 30.

hCAF1, a new regulator of PRMT1-dependent arginine methylation

Affiliations

hCAF1, a new regulator of PRMT1-dependent arginine methylation

Yannis Robin-Lespinasse et al. J Cell Sci. .

Abstract

Protein arginine methylation is an emergent post-translational modification involved in a growing number of cellular processes, including transcriptional regulation, cell signaling, RNA processing and DNA repair. Although protein arginine methyltransferase 1 (PRMT1) is the major arginine methyltransferase in mammals, little is known about the regulation of its activity, except for the regulation induced by interaction with the antiproliferative protein BTG1 (B-cell translocation gene 1). Since the protein hCAF1 (CCR4-associated factor 1) was described to interact with BTG1, we investigated a functional link between hCAF1 and PRMT1. By co-immunoprecipitation and immunofluorescence experiments we demonstrated that endogenous hCAF1 and PRMT1 interact in vivo and colocalize in nuclear speckles, a sub-nuclear compartment enriched in small nuclear ribonucleoproteins and splicing factors. In vitro methylation assays indicated that hCAF1 is not a substrate for PRMT1-mediated methylation, but it regulates PRMT1 activity in a substrate-dependent manner. Moreover, small interfering RNA (siRNA)-mediated silencing of hCAF1 in MCF-7 cells significantly modulates the methylation of endogenous PRMT1 substrates. Finally, we demonstrated that in vitro and in the cellular context, hCAF1 regulates the methylation of Sam68 and histone H4, two PRMT1 substrates. Since hCAF1 and PRMT1 have been involved in the regulation of transcription and RNA metabolism, we speculate that hCAF1 and PRMT1 could contribute to the crosstalk between transcription and RNA processing.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources