Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 May;27(5):749-56.
doi: 10.1093/treephys/27.5.749.

No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

Affiliations

No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest

Nicholas R Betson et al. Tree Physiol. 2007 May.

Abstract

Characterization of soil respiration rates and delta(13)C values of soil-respired CO(2) are often based on measurements at a particular time of day. A study by Gower et al. (2001) in a boreal forest demonstrated diurnal patterns of soil CO(2) flux using transparent measurement chambers that included the understory vegetation. It is unclear whether these diurnal patterns were solely the result of photosynthetic CO(2) uptake during the day by the understory or whether there were underlying trends in soil respiration, perhaps driven by plant root allocation, as recently demonstrated in Mediterranean oak savannah. We undertook intensive sampling campaigns in a boreal Picea abies L. Karst. forest to investigate whether diurnal variations in soil respiration rate and stable carbon isotope ratio (delta(13)C) exist in this ecosystem when no understory vegetation is present in the measurement chamber. Soil respiration rates and delta(13)C were measured on plots in which trees were either girdled (to terminate the fraction of soil respiration directly dependent on recent photosynthate from the trees), or not girdled, every 4 h over two 48-hour cycles during the growth season of 2004. Shoot photosynthesis and environmental parameters were measured concurrently. No diurnal patterns in soil respiration rates and delta(13)C were observed in either treatment, despite substantial variations in climatic conditions and shoot photosynthetic rates in non-girdled trees. Consequently, assessment of daily soil respiration rates and delta(13)C in boreal forest systems by single, instantaneous daily measurements does not appear to be confounded by substantial diurnal variation.

PubMed Disclaimer

Publication types

LinkOut - more resources