Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;32(3):401-5.
doi: 10.1007/s11064-006-9229-1.

Mechanism of activation of caspase-9 and caspase-3 during hypoxia in the cerebral cortex of newborn piglets: the role of nuclear Ca2+ -influx

Affiliations

Mechanism of activation of caspase-9 and caspase-3 during hypoxia in the cerebral cortex of newborn piglets: the role of nuclear Ca2+ -influx

Maria Delivoria-Papadopoulos et al. Neurochem Res. 2007 Mar.

Abstract

In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity Ca2+-ATPase-dependent increase in nuclear Ca2+ -influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+ -influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+ -ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets. Thirteen newborn piglets were divided into three groups, normoxic (Nx, n=4), hypoxic (Hx, n=4), and hypoxic treated with clonidine (100 mg/kg) (Hx-Cl, n=5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic substrates. ATP (micromoles/g brain) was 4.6 +/- 0.3 in Nx, 1.7 +/- 0.4 in Hx (P < 0.05 vs. Nx), and 1.5 +/- 0.2 in Hx-Cl (P < 0.05 vs. Nx). PCr (micromoles/g brain) was 3.6 +/- 0.4 in Nx, 1.1 +/- 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 +/- 0.2 in Hx-Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 +/- 0.0642 in Nx and increased to 0.808 +/- 0.080 (P < 0.05 vs. Nx and Hx-Cl) in the Hx and 0.562 +/- 0.050 in the Hx-Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h) was 22.0 +/- 1.3 in Nx and 32 +/- 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 +/- 3.2 in the Hx-Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+ -ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Neurochem Res. 2001 Dec;26(12 ):1335-41 - PubMed
    1. Cell. 1996 Jul 12;86(1):147-57 - PubMed
    1. Brain Res. 2002 Nov 1;954(1):60-7 - PubMed
    1. Science. 1997 Feb 21;275(5303):1122-6 - PubMed
    1. Neurosci Lett. 2004 Jul 1;364(2):119-23 - PubMed

Publication types

LinkOut - more resources