Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 30;415(3):200-4.
doi: 10.1016/j.neulet.2007.01.027. Epub 2007 Jan 14.

Effects of desensitized nicotinic receptors on rotational behavior in a 6-hydroxydopamine model of Parkinson's disease

Affiliations

Effects of desensitized nicotinic receptors on rotational behavior in a 6-hydroxydopamine model of Parkinson's disease

Furong Han et al. Neurosci Lett. .

Abstract

The purpose of this study was to investigate the effects of desensitized nicotinic acetylcholine receptors (nAChRs) on rotational behavior in the unilateral 6-hydroxydopamine (6-OHDA) model of Parkinson's disease (PD). When rats were treated with different doses of nicotine, nAChRs were observed in activated, subacute desensitized, acute desensitized, and chronic desensitized states. The rotational behavior of the hemiparkinsonian rats was determined when nAChRs were in the activated or different desensitized states. The results showed that hemiparkinsonian rats exhibited no significant changes in apomorphine-induced rotation when brain nAChRs were in an activated state. However, hemiparkinsonian rats displayed a significant reduction in apomorphine-induced rotational behavior when brain nAChRs were in subacute, acute, or chronic desensitized states induced by repeated administration of nicotine. When nAChRs were blocked by the nAChR antagonist mecamylamine, the behavior of the hemiparkinsonian rats worsened. These results suggest that desensitized nAChRs can lead to behavioral improvement in the 6-OHDA rat model of PD.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources