Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;26(6):471-8.
doi: 10.1016/j.semnephrol.2006.12.001.

Distal renal tubular acidosis and the potassium enigma

Affiliations
Review

Distal renal tubular acidosis and the potassium enigma

Daniel Batlle et al. Semin Nephrol. 2006 Nov.

Erratum in

  • Semin Nephrol. 2007 May;27(3):373

Abstract

Severe hypokalemia is a central feature of the classic type of distal renal tubular acidosis (RTA), both in hereditary and acquired forms. In the past decade, many of the genetic defects associated with the hereditary types of distal RTA have been identified and have been the subject of a number of reviews. These genetic advances have expanded our understanding of the molecular mechanisms that lead to distal RTA. In this article, we review data published in the literature on plasma potassium from patients with inherited forms of distal RTA. The degree of hypokalemia varies depending on whether the disease is autosomal autosomal-recessive or dominant, but, interestingly, it occurs in defects caused by mutations in genes encoding the AE-1 exchanger, the carbonic anhydrase II gene, and genes encoding different subunits of the H+ adenosine triphosphatase. This shows that a unique defect involving the H+/K+-adenosine triphosphatase leading to renal potassium wastage cannot explain the hypokalemia seen in virtually all types of classic distal RTA.

PubMed Disclaimer

LinkOut - more resources