Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1992 Jan;70(1):172-83.
doi: 10.1161/01.res.70.1.172.

Naloxone potentiates cardiopulmonary baroreflex sympathetic control in normal humans

Affiliations
Free article
Clinical Trial

Naloxone potentiates cardiopulmonary baroreflex sympathetic control in normal humans

H P Schobel et al. Circ Res. 1992 Jan.
Free article

Abstract

Naloxone, an opioid antagonist, augments baroreflex mechanisms in animals; this occurrence suggests that endogenous opioids blunt baroreflex responses. Limited human studies suggest an inhibitory action of endogenous opioids on baroreflex-mediated vagal responses during arterial baroreceptor deactivation. To evaluate the potential effect of endogenous opioids on cardiopulmonary baroreflex mechanisms in humans, we measured arterial and central venous pressures, heart rate, and efferent muscle sympathetic nerve activity (MSNA, by peroneal microneurography) during unloading of cardiopulmonary baroreceptors with incremental lower body negative pressure (LBNP, from 0 to -15 mm Hg) and during the cold pressor test in 21 normal subjects (aged 24 +/- 1 [mean +/- SEM] years). In 14 subjects, we performed LBNP before and after naloxone (0.15 mg/kg i.v.) and placebo (n = 11) on separate days. In six of these 14 subjects and an additional seven subjects (n = 13), studies were also performed before and after administration of a lower dose of naloxone (0.075 mg/kg i.v.) on separate days. Neither dose of naloxone significantly altered control arterial or central venous pressures or heart rate. Control MSNA was reduced after the higher but not after the lower dose of naloxone. Comparable reductions in central venous pressure were produced by LBNP in all groups before and after naloxone or placebo, whereas LBNP did not alter arterial pressure. Cardiopulmonary baroreflex sympathetic sensitivity, which was derived as the slope of the linear regression relation between percent change in total MSNA (units) per absolute change in central venous pressure (mm Hg) during incremental LBNP, was significantly augmented after both the high dose (from 18.6 +/- 4.7%/mm Hg to 39.3 +/- 8.1%/mm Hg, p = 0.001) and low dose of naloxone, whereas placebo had no effect. MSNA responses to the cold pressor test were not altered by either dose of naloxone. Thus, naloxone selectively potentiates cardiopulmonary baroreflex regulation of sympathetic neural activity in normal humans. These findings suggest that endogenous opioids exert a tonic inhibitory effect on sympathetic responses to orthostatic stress in normal humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources