Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jun;292(6):H2867-73.
doi: 10.1152/ajpheart.00043.2007. Epub 2007 Feb 2.

Muscle metaboreflex attenuates spontaneous heart rate baroreflex sensitivity during dynamic exercise

Affiliations
Free article

Muscle metaboreflex attenuates spontaneous heart rate baroreflex sensitivity during dynamic exercise

Javier A Sala-Mercado et al. Am J Physiol Heart Circ Physiol. 2007 Jun.
Free article

Abstract

Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.

PubMed Disclaimer

Publication types

LinkOut - more resources