Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;39(2):268-74.
doi: 10.1249/01.mss.0000251775.46460.cb.

Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling

Affiliations

Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling

Sébastien Racinais et al. Med Sci Sports Exerc. 2007 Feb.

Abstract

Purpose: To investigate muscle deoxygenation and neural drive-related changes during repeated cycling sprints in a fatiguing context.

Methods: Nine healthy male subjects performed a repeated-sprint test (consisting of 10 x 6-s maximal sprints interspaced by 30 s of recovery). Oxygen uptake was measured breath-by-breath; muscle deoxygenation of the vastus lateralis was assessed continuously using the near-infrared spectroscopy technique. Surface electromyograms (RMS) of both vastus lateralis and biceps femoris were also recorded. Furthermore, before and after the repeated-sprint test, the percentage of muscle activation by voluntary drive (twitch-interpolated method) was measured during a maximal voluntary contraction.

Results and discussion: Consistent with previous research, our data showed a significant power decrement during repeated-sprint exercise. There was also a progressive muscle deoxygenation, but our data showed that the ability of the subjects to use available O2 throughout the entire repeated-sprint test was well preserved. Our data displayed a significant decrement in the RMS activity during the acceleration phase of each sprint across the repeated-sprint exercise. Moreover, decrement in motor drive was confirmed after exercise by a significant decrease in both percentage of voluntary activation and RMS/M-wave ratio during a maximal voluntary contraction.

Conclusion: In this experimental design, our findings suggest that the ability to repeat short-duration (6 s) sprints was associated with the occurrence of both peripheral and central fatigue.

PubMed Disclaimer

Comment in