Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;74(5 Pt 1):051907.
doi: 10.1103/PhysRevE.74.051907. Epub 2006 Nov 10.

Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model

Affiliations

Coexistence versus extinction in the stochastic cyclic Lotka-Volterra model

Tobias Reichenbach et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Nov.

Abstract

Cyclic dominance of species has been identified as a potential mechanism to maintain biodiversity, see, e.g., B. Kerr, M. A. Riley, M. W. Feldman and B. J. M. Bohannan [Nature 418, 171 (2002)] and B. Kirkup and M. A. Riley [Nature 428, 412 (2004)]. Through analytical methods supported by numerical simulations, we address this issue by studying the properties of a paradigmatic non-spatial three-species stochastic system, namely, the "rock-paper-scissors" or cyclic Lotka-Volterra model. While the deterministic approach (rate equations) predicts the coexistence of the species resulting in regular (yet neutrally stable) oscillations of the population densities, we demonstrate that fluctuations arising in the system with a finite number of agents drastically alter this picture and are responsible for extinction: After long enough time, two of the three species die out. As main findings we provide analytic estimates and numerical computation of the extinction probability at a given time. We also discuss the implications of our results for a broad class of competing population systems.

PubMed Disclaimer

Publication types

LinkOut - more resources