Hydrodynamics of isotropic and liquid crystalline active polymer solutions
- PMID: 17280102
- DOI: 10.1103/PhysRevE.74.061913
Hydrodynamics of isotropic and liquid crystalline active polymer solutions
Abstract
We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.
Similar articles
-
Instabilities in a two-dimensional polar-filament--motor system.Eur Phys J E Soft Matter. 2008 Nov;27(3):243-51. doi: 10.1140/epje/i2007-10377-x. Epub 2008 Oct 29. Eur Phys J E Soft Matter. 2008. PMID: 18972145
-
Nematic and polar order in active filament solutions.Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Dec;72(6 Pt 1):060901. doi: 10.1103/PhysRevE.72.060901. Epub 2005 Dec 12. Phys Rev E Stat Nonlin Soft Matter Phys. 2005. PMID: 16485924
-
Rheology of active filament solutions.Phys Rev Lett. 2006 Dec 31;97(26):268101. doi: 10.1103/PhysRevLett.97.268101. Epub 2006 Dec 29. Phys Rev Lett. 2006. PMID: 17280467
-
Tension dynamics in semiflexible polymers. I. Coarse-grained equations of motion.Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Mar;75(3 Pt 1):031905. doi: 10.1103/PhysRevE.75.031905. Epub 2007 Mar 7. Phys Rev E Stat Nonlin Soft Matter Phys. 2007. PMID: 17500724
-
Invited review liquid crystal models of biological materials and silk spinning.Biopolymers. 2012 Jun;97(6):374-96. doi: 10.1002/bip.21723. Epub 2011 Oct 12. Biopolymers. 2012. PMID: 21994072 Review.
Cited by
-
Instabilities in a two-dimensional polar-filament--motor system.Eur Phys J E Soft Matter. 2008 Nov;27(3):243-51. doi: 10.1140/epje/i2007-10377-x. Epub 2008 Oct 29. Eur Phys J E Soft Matter. 2008. PMID: 18972145
-
Emergent complexity of the cytoskeleton: from single filaments to tissue.Adv Phys. 2013 Jan;62(1):1-112. doi: 10.1080/00018732.2013.771509. Epub 2013 Mar 6. Adv Phys. 2013. PMID: 24748680 Free PMC article. Review.
-
Buckling, stiffening, and negative dissipation in the dynamics of a biopolymer in an active medium.Proc Natl Acad Sci U S A. 2009 Nov 24;106(47):19776-9. doi: 10.1073/pnas.0900451106. Epub 2009 Nov 9. Proc Natl Acad Sci U S A. 2009. PMID: 19901332 Free PMC article.
-
Multiscale modeling and simulation of microtubule-motor-protein assemblies.Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(6):062709. doi: 10.1103/PhysRevE.92.062709. Epub 2015 Dec 10. Phys Rev E Stat Nonlin Soft Matter Phys. 2015. PMID: 26764729 Free PMC article.
-
Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors.Eur Phys J E Soft Matter. 2021 Mar 29;44(3):45. doi: 10.1140/epje/s10189-021-00042-9. Eur Phys J E Soft Matter. 2021. PMID: 33779863 Free PMC article.