Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007 Jan;189(1):3-14.
doi: 10.1111/j.1748-1716.2006.01610.x.

Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine

Affiliations
Review

Mediators of tubuloglomerular feedback regulation of glomerular filtration: ATP and adenosine

H Castrop. Acta Physiol (Oxf). 2007 Jan.

Abstract

In the juxtaglomerular apparatus of the kidney the loop of Henle gets into close contact to its parent glomerulus. This anatomical link between the tubular system and the vasculature of the afferent and efferent arteriole enables specialized tubular cells, the macula densa (MD) cells, to establish an intra-nephron feedback loop designed to control preglomerular resistance and thereby single nephron glomerular filtration rate. This review focuses on the signalling mechanisms which link salt-sensing MD cells and the regulation of preglomerular resistance, a feedback loop known as tubuloglomerular feedback (TGF). Two purinergic molecules, ATP and adenosine, have emerged over the years as most likely candidates to serve as mediators of TGF. Data will be reviewed supporting a role of either ATP or adenosine as mediators of TGF. In addition, a concept will be discussed that integrates both ATP and adenosine into one signalling cascade that includes (i) release of ATP from MD cells upon increases in tubular salt concentration, (ii) extracellular degradation of ATP to form adenosine, and (iii) adenosine-mediated vasoconstriction of the afferent arteriole.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources