Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;28(13):2183-91.
doi: 10.1016/j.biomaterials.2006.12.030. Epub 2007 Jan 11.

Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix

Affiliations

Biomechanical and biochemical characteristics of a human fibroblast-produced and remodeled matrix

Jan-Eric W Ahlfors et al. Biomaterials. 2007 Apr.

Abstract

We report on a culture method for the rapid production of a strong and thick natural matrix by human cells for tissue engineering applications. Dermal fibroblasts were cultured for three weeks at high density on porous substrates in serum-containing or chemically defined media. The mechanical and biochemical properties of the resulting cell-derived matrix (CDM) were compared to those of standard fibroblast-populated collagen and fibrin gels and native human skin. We found that the ultimate tensile strength of CDM cultured in our chemically defined media (313+/-8.7 kPa) is significantly greater than for collagen gels (168+/-39.3 kPa), fibrin gels (133+/-8.0 kPa) and CDM cultured with serum (223+/-9.0 kPa), but less than native skin (713+/-55.2 kPa). In addition to the biomechanics, this *CDM is also biochemically more similar to native skin than the collagen and fibrin gels in terms of all parameters measured. As *CDM is produced by human cells in a chemically defined culture medium and is mechanically robust, it may be a viable living tissue equivalent for many connective tissue replacement applications requiring initial mechanical stability yet a high degree of biocompatibility.

PubMed Disclaimer

Publication types

LinkOut - more resources