Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005:2005:4247-50.
doi: 10.1109/IEMBS.2005.1615402.

Simulation analysis of nerve block by high frequency biphasic electrical current based on frankenhaeuser-huxley model

Affiliations

Simulation analysis of nerve block by high frequency biphasic electrical current based on frankenhaeuser-huxley model

Xu Zhang et al. Conf Proc IEEE Eng Med Biol Soc. 2005.

Abstract

Nerve conduction block induced by high frequency biphasic electrical current was simulated using a lumped circuit model of the myelinated axon based on Frankenhaueuser-Huxley (FH) equations. Axons of different diameters (5-20 μm) can be blocked completed when the stimulation frequency is above 10 kHz. At higher frequency a higher stimulation intensity is needed to block nerve conduction. Larger diameter axons have lower block threshold. The activation of potassium channels, rather than inactivation of sodium channels, is the possible mechanism underlying the nerve conduction block of the myelinated axon induced by high frequency biphasic pulse current. This simulation study, which provides more information about the axonal conduction block induced by high frequency biphasic pulse current, can guide future animal experiments as well as optimize stimulation waveforms for electrical nerve block in possible clinical applications.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources