Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005:2006:1036-8.
doi: 10.1109/IEMBS.2005.1616595.

NTA-Functionalized Poly(L-lysine)-g-Poly(Ethylene Glycol): A Polymeric Interface for Binding and Studying 6 His-tagged Proteins

Affiliations

NTA-Functionalized Poly(L-lysine)-g-Poly(Ethylene Glycol): A Polymeric Interface for Binding and Studying 6 His-tagged Proteins

Guoliang Zhen et al. Conf Proc IEEE Eng Med Biol Soc. 2005.

Abstract

In this paper, a novel graft copolymer, poly-(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) with part of the PEG chains carrying a terminal nitrilotriacetic acid group (NTA) was synthesized. Through electrostatic interactions, these polycationic graft co-polymers assemble spontaneously from aqueous solution onto negatively charged surfaces, forming polymeric monolayers that present NTA groups at controlled surface densities on a highly PEGylated background. The NTA-functionalized PLL-g-PEG surfaces proved to be highly resistant to nonspecific adsorption in contact with human serum while allowing the specific and reversible surface binding of GFPuv-6His and β-lactamase-6His in native conformation. Micropatterns consisting of NTA-functionalized PLL-g-PEG in a background of PLL-g-PEG were produced using the "molecular assembly patterning by lift-off" technique. Exposure to Ni2+and GFPuv-6His resulted in a protein pattern of excellent contrast as judged by fluorescence microscopy. Furthermore, optical waveguide lightmode spectroscopy (OWLS) and a miniature fiber optic absorbance spectrometer (FOAS) were combined as affinity and catalytic biosensor to monitor in situ and quantitatively the amount of immobilized β-lactamase-6His and to determine the activity of the immobilized enzyme. The NTA-functionalized PLL-g-PEG surface is considered to be a promising sensor platform for binding 6 His-tagged proteins thanks to the simplicity and cost-effectiveness of the surface modification protocol, high specificity and nearly quantitative reversibility of the protein binding, and the potential to fabricate microarrays of multiple capture molecules.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources