Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;12(11):1730-6.
doi: 10.3201/eid1211.051581.

Clostridium difficile PCR ribotypes in calves, Canada

Affiliations

Clostridium difficile PCR ribotypes in calves, Canada

Alexander Rodriguez-Palacios et al. Emerg Infect Dis. 2006 Nov.

Abstract

We investigated Clostridium difficile in calves and the similarity between bovine and human C. difficile PCR ribotypes by conducting a case-control study of calves from 102 dairy farms in Canada. Fecal samples from 144 calves with diarrhea and 134 control calves were cultured for C. difficile and tested with an ELISA for C. difficile toxins A and B. C. difficile was isolated from 31 of 278 calves: 11 (7.6%) of 144 with diarrhea and 20 (14.9%) of 134 controls (p = 0.009). Toxins were detected in calf feces from 58 (56.8%) of 102 farms, 57 (39.6%) of 144 calves with diarrhea, and 28 (20.9%) of 134 controls (p = 0.0002). PCR ribotyping of 31 isolates showed 8 distinct patterns; 7 have been identified in humans, 2 of which have been associated with outbreaks of severe disease (PCR types 017 and 027). C. difficile may be associated with calf diarrhea, and cattle may be reservoirs of C. difficile for humans.

PubMed Disclaimer

Figures

Figure
Figure
Clostridium difficile PCR ribotypes of bovine origin (dairy calves), Ontario, Canada, 2004. *Calf isolate classified as PCR ribotype 017 at the Anaerobe Reference Laboratory, University Hospital of Wales, Cardiff, United Kingdom. Isolates of human (lane 1), calf (lane 2), and canine (lane 3) origin identified in Ontario are indistinguishable. The first and tenth wells contain 100-bp molecular mass markers.

Similar articles

Cited by

References

    1. Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, et al. Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet. 2005;366:1079–84. 10.1016/S0140-6736(05)67420-X - DOI - PubMed
    1. van den Berg RJ, Claas EC, Oyib DH, Klaassen CH, Dijkshoorn L, Brazier JS, et al. Characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates from outbreaks in different countries by amplified fragment length polymorphism and PCR ribotyping. J Clin Microbiol. 2004;42:1035–41. 10.1128/JCM.42.3.1035-1041.2004 - DOI - PMC - PubMed
    1. Pepin J, Saheb N, Coulombe MA, Alary ME, Corriveau MP, Authier S, et al. Emergence of fluoroquinolones as the predominant risk factor for Clostridium difficile–associated diarrhea: a cohort study during an epidemic in Quebec. Clin Infect Dis. 2005;41:1254–60. 10.1086/496986 - DOI - PubMed
    1. McDonald LC, Killgore GE, Thompson A, Owens RC Jr, Kazakova SV, Sambol SP, et al. An epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med. 2005;353:2433–41. 10.1056/NEJMoa051590 - DOI - PubMed
    1. Loo VG, Poirier L, Miller MA, Oughton M, Libman MD, Michaud S, et al. A predominantly clonal multi-institutional outbreak of Clostridium difficile–associated diarrhea with high morbidity and mortality. N Engl J Med. 2005;353:2442–9. 10.1056/NEJMoa051639 - DOI - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources