Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;88(2):208-16.
doi: 10.1002/bip.20700.

Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative

Affiliations

Solution structures and biological functions of the antimicrobial peptide, arenicin-1, and its linear derivative

Ju-Un Lee et al. Biopolymers. 2007.

Abstract

Arenicin-1 (AR-1) is a novel antimicrobial peptide that was isolated from coelomocytes of the marine polychaeta lugworm Arenicola marina and shown to contain a single disulfide bond between Cys3 and Cys20, forming an 18-residue ring [Ovchinnikova, T. V. et al., FEBS Lett 2004, 577, 209-214]. To determine the role of this disulfide bond, we synthesized AR-1 (RWCVYAYVRVRGVLVRYRRCW) and its linear derivative, arenicin-1-S (AR-1-S: RWSVYAYVRVRGVLVRYRRSW). Activity assays revealed that AR-1-S is somewhat less active against bacterial cells than AR-1. Both peptides were very hydrophobic, and displayed cytotoxicity against human red blood cells. Analysis of the tertiary structures of AR-1 and AR-1-S by NMR spectroscopy disclosed that AR-1 has two-stranded antiparallel beta-sheet structures with amphipathicity, while AR-1-S displays a random coil structure in DMSO. Our biological data for AR-1 and AR-1-S indicate that the hydrophobic-hydrophilic balance, disulfide bridge, and the amphipathic beta-sheet structure of the peptides play important roles in their biological activities. Elucidation of the structure of AR-1 and its derivative should facilitate the design of novel non-cytotoxic peptide antibiotics with potent antibacterial activities.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources