Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 2;50(1):103-7.
doi: 10.1002/ijc.2910500121.

Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis

Affiliations

Lethal deformation of cancer cells in the microcirculation: a potential rate regulator of hematogenous metastasis

L Weiss et al. Int J Cancer. .

Abstract

The hypothesis has been advanced that deformation-induced lethal mechanical trauma, resulting in surface-membrane rupture, is inflicted on circulating cancer cells trapped in the microcirculation, and that this rapid cell-killing mechanism is a potentially important rate regulator for hematogenous metastasis. We describe and discuss an in vivo test of this hypothesis. Vital fluorescence microscopy was performed on the microcirculation of cremaster muscle preparations in mice, following retrograde injections into the femoral artery of acridine orange-stained sarcoma cells. Cancer cells having mean diameters of 16.5 microns in suspension, were deformed from spheres into cylinders having a mean length of 53 microns, in 7-microns diameter capillaries. Most of these cells were dead several minutes after injection. It was estimated that sphere-to-cylinder shape-transitions of this magnitude required an average increase of 52% in apparent cell surface area. Evidence is presented that most of this apparent increase was achieved by non-lethal surface "unfolding", utilizing membrane "excess". That cancer-cell deformation of the magnitude observed in vivo is the direct cause of lethal, surface-membrane rupture was indicated by the observed loss of membrane integrity in cells deformed from spherical to cylindrical shape in vitro, by aspiration into micropipettes of capillary dimensions. The experimental observations are therefore consistent with the hypothesis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources