An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates
- PMID: 17289939
- DOI: 10.1126/science.1138584
An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates
Abstract
Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently to produce high-temperature superconductivity. Associated with these changes are spectral-weight transfers from the high-energy states of the insulator to low energies. In theory, these should be detectable as an imbalance between the tunneling rate for electron injection and extraction-a tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding virtually identical phenomena in two lightly hole-doped cuprates: Ca(1.88)Na(0.12)CuO(2)Cl2 and Bi2Sr2Dy(0.2)Ca(0.8)Cu2O(8+delta). Intense spatial variations in tunneling asymmetry occur primarily at the planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond-centered electronic pattern without long-range order but with 4a(0)-wide unidirectional electronic domains dispersed throughout (a(0): the Cu-O-Cu distance). The emerging picture is then of a partial hole localization within an intrinsic electronic glass evolving, at higher hole densities, into complete delocalization and highest-temperature superconductivity.
Comment in
-
Physics. Watching rush hour in the world of electrons.Science. 2007 Mar 9;315(5817):1372-3. doi: 10.1126/science.1139805. Science. 2007. PMID: 17347429 No abstract available.
Publication types
LinkOut - more resources
Full Text Sources
Miscellaneous