Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 9;315(5817):1380-5.
doi: 10.1126/science.1138584. Epub 2007 Feb 8.

An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates

Affiliations

An intrinsic bond-centered electronic glass with unidirectional domains in underdoped cuprates

Y Kohsaka et al. Science. .

Abstract

Removing electrons from the CuO2 plane of cuprates alters the electronic correlations sufficiently to produce high-temperature superconductivity. Associated with these changes are spectral-weight transfers from the high-energy states of the insulator to low energies. In theory, these should be detectable as an imbalance between the tunneling rate for electron injection and extraction-a tunneling asymmetry. We introduce atomic-resolution tunneling-asymmetry imaging, finding virtually identical phenomena in two lightly hole-doped cuprates: Ca(1.88)Na(0.12)CuO(2)Cl2 and Bi2Sr2Dy(0.2)Ca(0.8)Cu2O(8+delta). Intense spatial variations in tunneling asymmetry occur primarily at the planar oxygen sites; their spatial arrangement forms a Cu-O-Cu bond-centered electronic pattern without long-range order but with 4a(0)-wide unidirectional electronic domains dispersed throughout (a(0): the Cu-O-Cu distance). The emerging picture is then of a partial hole localization within an intrinsic electronic glass evolving, at higher hole densities, into complete delocalization and highest-temperature superconductivity.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources