Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;57(2):85-94.
doi: 10.2170/physiolsci.RP011406. Epub 2007 Feb 11.

Regulation of extracellular UTP-activated Cl- current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes

Affiliations
Free article

Regulation of extracellular UTP-activated Cl- current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes

Shintaro Yamamoto et al. J Physiol Sci. 2007 Apr.
Free article

Abstract

The intracellular signaling pathways responsible for extracellualr uridine-5'-triphosphate (UTPo)-induced chloride (Cl-) currents (I(Cl.UTP)) were studied in mouse ventricular myocytes with the whole-cell clamp technique. UTPo (0.1 to 100 microM) activated a whole-cell current that showed a time-independent activation, a linear current-voltage relationship in symmetrical Cl- solutions, an anion selectivity of Cl- > iodide > aspartate, and an inhibition by a thiazolidinone-derived specific inhibitor (CFTR(inh)-172, 10 microM) of cystic fibrosis transmembrane conductance regulator (CFTR), but not by a disulfonic stilbene derivative (DIDS, 100 microM), these properties matching those of CFTR Cl- channels. The potency order of nucleotides for an activation of the Cl- current was UTP = ATP > uridine-5'-diphosphate (UDP) = ADP. Suramin (100 microM), a P2Y receptor antagonist, strongly inhibited the UTPo -activation of the Cl- current, whereas pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS, 100 microM), another P2Y receptor antagonist, induced little inhibition of I(Cl.UTP). The activation of I(Cl.UTP) was sensitive to protein kinase C (PKC) inhibitor, phospholipase C (PLC) inhibitor, intracellular GDPbetaS (nonhydrolyzable GDP analogue) or anti-Gq/11 antibody. UTPo failed to activate the Cl- current when the cells were dialyzed with nonhydrolyzable ATP analogues (ATPS or AMP-PNP) without ATP, suggesting that ATP hydrolysis is a prerequisite for the current activation. I(Cl.UTP) was persistently activated with a mixture of ATPgammaS + ATP in the pipette, suggesting the involvement of phosphorylation reaction in the current activation process. Our results strongly suggest that I(Cl.UTP) is due to the activation of CFTR Cl- channels through Gq/11-coupled P2Y2 receptor-PLC-PKC signaling and ATP hydrolysis in mouse heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources