Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1992 Feb;198(2):375-8.
doi: 10.1016/0014-4827(92)90395-o.

Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser

Affiliations
Free article
Comparative Study

Optical trapping in animal and fungal cells using a tunable, near-infrared titanium-sapphire laser

M W Berns et al. Exp Cell Res. 1992 Feb.
Free article

Abstract

We have compared two different laser-induced optical light traps for their utility in moving organelles within living animal cells and walled fungal cells. The first trap employed a continuous wave neodymium-yttrium aluminum garnet (Nd-YAG) laser at a wavelength of 1.06 micron. A second trap was constructed using a titanium-sapphire laser tunable from 700 to 1000 nm. With the latter trap we were able to achieve much stronger traps with less laser power and without damage to either mitochondria or spindles. Chromosomes and nuclei were easily displaced, nucleoli were separated and moved far away from interphase nuclei, and Woronin bodies were removed from septa. In comparison, these manipulations were not possible with the Nd-YAG laser-induced trap. The optical force trap induced by the tunable titanium-sapphire laser should find wide application in experimental cell biology because the wavelength can be selected for maximization of force production and minimization of energy absorption which leads to unwanted cell damage.

PubMed Disclaimer

Publication types

LinkOut - more resources