Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul-Aug;90(1):78-86.
doi: 10.1016/j.biosystems.2006.07.002. Epub 2006 Jul 10.

Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers

Affiliations

Selecting a minimal number of relevant genes from microarray data to design accurate tissue classifiers

Hui-Ling Huang et al. Biosystems. 2007 Jul-Aug.

Abstract

It is essential to select a minimal number of relevant genes from microarray data while maximizing classification accuracy for the development of inexpensive diagnostic tests. However, it is intractable to simultaneously optimize gene selection and classification accuracy that is a large parameter optimization problem. We propose an efficient evolutionary approach to gene selection from microarray data which can be combined with the optimal design of various multiclass classifiers. The proposed method (named GeneSelect) consists of three parts which are fully cooperated: an efficient encoding scheme of candidate solutions, a generalized fitness function, and an intelligent genetic algorithm (IGA). An existing hybrid approach based on genetic algorithm and maximum likelihood classification (GA/MLHD) is proposed to select a small number of relevant genes for accurate classification of samples. To evaluate the performance of GeneSelect, the gene selection is combined with the same maximum likelihood classification (named IGA/MLHD) for convenient comparisons. The performance of IGA/MLHD is applied to 11 cancer-related human gene expression datasets. The simulation results show that IGA/MLHD is superior to GA/MLHD in terms of the number of selected genes, classification accuracy, and robustness of selected genes and accuracy.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources