Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar 1;67(3):879-87.
doi: 10.1016/j.ijrobp.2006.10.037.

Reduction of pulmonary compliance found with high-resolution computed tomography in irradiated mice

Affiliations

Reduction of pulmonary compliance found with high-resolution computed tomography in irradiated mice

Thomas Guerrero et al. Int J Radiat Oncol Biol Phys. .

Abstract

Purpose: To demonstrate that high-resolution computed tomography (CT) can be used to quantify loss of pulmonary compliance in irradiated mice.

Methods and materials: Computed tomography images of three nonirradiated (controls) and three irradiated mice were obtained 200 days after a single dose of 16-Gy Co (60) thoracic irradiation. While intubated, each animal was imaged at static breath-hold pressures of 2, 10, and 18 cm H2O. A deformable image registration algorithm was used to calculate changes in air volume between adjacent-pressure CT image pairs (e.g., 2 and 10 cm H2O), and functional images of pulmonary compliance were generated. The mass-specific compliance was calculated as the change in volume divided by the pressure difference between the 2 image sets and the mass of lung tissue.

Results: For the irradiated mice, the lung parenchyma mean CT values ranged from -314 (+/- 11) Hounsfield units (HU) to -378 (+/- 11) HU. For the control mice, the mean CT values ranged from -549 (+/- 11) HU to -633 (+/- 11) HU. Irradiated mice had a 60% (45, 74%; 95% confidence interval) lower mass-specific compliance than did the controls (0.039 [+/- 0.0038] vs. 0.106 [+/- 0.0038] mL air per cm H2O per g lung) from the 2-cm to 10-cm H2O CT image pair. The difference in compliance between groups was less pronounced at the higher distending pressures.

Conclusion: High-resolution CT was used to quantify a reduction in mass-specific compliance following whole lung irradiation in mice. This small animal radiation injury model and assay may be useful in the study of lung injury.

PubMed Disclaimer

Publication types