Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Jan 1;261(1):62-78.
doi: 10.1002/jez.1402610108.

Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration

Affiliations

Evolutionary modification of regenerative capability in vertebrates: a comparative study on teleost pectoral fin regeneration

G P Wagner et al. J Exp Zool. .

Abstract

The regenerative ability of the pectoral fins of 14 species from 6 euteleostean families was tested. Blastema formation and distal outgrowth was observed in all species, indicating the initiation of regeneration in all species tested. Interspecific variation exists with respect to the frequency of malformations and the patterns produced by heteromorphic regeneration. Taking into account published reports on pectoral fin regeneration, the systematic distribution of homo- and heteromorphic regeneration leads to the following conclusions: 1) regenerative ability of pectoral fins is a property inherited from the common ancestor of euteleosteans. Whether it is also the ancestral condition for the whole teleostean group cannot be determined, because reports on more primitive teleosteans like the herring and the osteoglossimorphs are missing. 2) A propensity to produce high frequencies of heteromorphic regenerates originated independently at least three times in Cypriniformes, Scorpaeniformes, and Perciformes. 3) Impaired regeneration is most commonly found in bottom fishes, although not all ground fish groups show heteromorphic regeneration. This suggests that impaired regeneration is not directly related to bottom dwelling, but most probably originated as a side effect of other adaptive changes. Hence, neither the presence nor the loss of faithful regeneration can be associated with particular adaptive scenarios in this group, since regeneration seems to be ancestral to all major euteleost groups and its loss has no clear adaptive significance. Whether there are adaptive reasons to maintain regenerative capability or whether there are cases of reestablishment of regeneration after it was lost cannot be decided on the basis of recent evidence. More observations on phylogenetically closely related species with variable regenerative capability are necessary to assess adaptive explanations of regeneration.

PubMed Disclaimer

Publication types

LinkOut - more resources